MAX materials and MXene materials are new two-dimensional materials which have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and also have shown broad application prospects in numerous fields. The following is a comprehensive overview of the properties, applications, and development trends of MAX and MXene materials.
What is MAX material?
MAX phase material is actually a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements on the periodic table, collectively known as “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the primary group elements, like aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is composed of M, A, X, the three aspects of the alternating composition arrangement, with hexagonal lattice structure. Because of their electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, these are commonly used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding along with other fields.
Properties of MAX material
MAX material is a new kind of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, comprising three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers to the transition metal, A refers back to the main-group elements, and X refers back to the elements of C and/or N. The MXene material is really a graphene-like structure obtained from the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAXenes and MXenes are novel two-dimensional nanomaterials composed of carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the excellent physical properties of MAX materials get them to have an array of applications in structural materials. For example, Ti3SiC2 is a kind of MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials can also be found in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and could be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials likewise have better photocatalytic properties, and electrochemical properties can be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which is often found in energy materials. For instance, K4(MP4)(P4) is one of the MAX materials with higher ionic conductivity and electrochemical activity, which can be used a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
What are MXene materials?
MXene materials are a new form of two-dimensional nanomaterials obtained by MAX phase treatment, just like the structure of graphene. The outer lining of MXene materials can connect with more functional atoms and molecules, and a high specific area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation ways of MXene materials usually range from the etching therapy for the MAX phase and also the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties such as electrical conductivity, magnetism and optics can be realized.
Properties of MXene materials
MXene materials are a new kind of two-dimensional transition metal carbide or nitride materials consisting of metal and carbon or nitrogen elements. These materials have excellent physical properties, such as high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., along with good chemical stability and the cabability to maintain high strength and stability at high temperatures.
Uses of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and are popular in energy storage and conversion. As an example, MXene materials can be used as electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials may also be used as catalysts in fuel cells to boost the activity and stability from the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. For instance, MXene materials can be used as electromagnetic shielding coatings, electromagnetic shielding cloth, and other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. For example, MXene materials bring gas sensors in environmental monitoring, which could realize high sensitivity and high selectivity detection of gases. In addition, MXene materials can also be used as biosensors in medical diagnostics and other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, with the continuous progress of science and technology and the increasing demand for applications, the preparation technology, performance optimization, and application parts of MAX and MXene materials will likely be further expanded and improved. These aspects can become the focus of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Later on, new preparation technologies and techniques could be further explored to understand a far more efficient, energy-saving and environmentally friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, however, there is still room for additional optimization. In the future, the composition, structure, surface treatment and other elements of the fabric can be studied and improved in depth to boost the material’s performance and stability.
Application areas: MAX materials and MXene materials have been widely used in numerous fields, but there are still many potential application areas to become explored. Later on, they could be further expanded, including in artificial intelligence, biomedicine, environmental protection and other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in lots of fields. Using the continuous progress of technology and science and the continuous improvement of application demand, the preparation technology, performance optimization and application regions of MAX and MXene materials is going to be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.